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and baryons with possibly different spin and parity, 
since we have introduced two kinds of unitary triplets 
and from them composed meson and baryon super-
multiplets. One of the pairs was identified as 0~ octet 
meson and P1/2 octet baryons, respectively. The other 
pair has not been observed so far but the Ds/2 octet and 
the recently observed cox, KTW, • • •, resonances might 
form another pair of octets. 

As was noted earlier, we could have two nonets 
(%y)Hyx) f° r the vector meson supermultiplets. One 
of them was identified as the observed vector meson 
supermultiplet. The other vector nonet, if they exist, 
necessarily obey the same mass sum rule but have 
opposite charge-conjugation parity compared to the 
usual nonet. The question of whether such a nonet exists 
in nature will be checked in future experiments. 

Note added in proof. By eliminating the parameter 
from Eqs. (2.5) and (2.7), we have the following mass 

INTRODUCTION 

IN recent years there has been an increasing interest 
in the study of vector mesons. It is partly due to 

the realization that a theoretical understanding of the 
various elementary-particle interactions seems to be 
closely connected with vector mesons. For example, a 
charged vector-meson field has been postulated as a 
possible intermediary field in the weak interactions.1 

Again in the strong interactions it is shown for some 
simple models that the mass of the nucleon is entirely 
due to boson-fermion interaction if a vector meson is 
introduced as an elementary system.2 Furthermore, in 
the recent Regge pole hypothesis, a vector field (massive 
photon) is necessary if one wants to consider the 
nucleons as Regge poles as was shown by Gell-Mann 
and Goldberger.3 Hence, in view of the appreciable role 
of vector meson in the recent works, a discussion of the 
various spin operators in the Kemmer theory which 
describes a vector meson in a manifestly covariant 
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formula: 

(M„-Mp) (Mt-Mp) = UMK*~MP) (Mv+Mf-IMK*) 

from which the mass formula (2.9) is obtained by a 
procedure of linearization. 

The author would like to thank Dr. M. Konuma for 
pointing out this relation. 
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form, may be of interest as these operators may find 
applications in the study of polarization and scattering 
phenomena. 

In this paper we shall give a set of spin operators 
which all commute with the Hamiltonian and hence 
they can be used to remove the spin degeneracy remain
ing after having specified the energy. First a three-
vector conserved spin operator obeying the usual 
angular-momentum commutation relations is discussed. 
This is useful for the discussion of polarization involving 
plane-wave states. Then using the method employed 
by Bargmann, Michel and Telegdi,4 Good,5 and Fradkin 
and Good,6 an axial four-vector spin operator analogous 
to Bargmann and Wigner's generators of the little 
group7 and an antisymmetric tensor operator are 
deduced. The algebraic properties and the connection 
between these three operators are worked out. Finally, 
the covariant forms of the energy and spin projection 

4V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. 
Letters 2, 435 (1959). 

8 R. H. Good, Jr., Phys. Rev. 125, 2112 (1962). 
6 D. M. Fradkin and R. H. Good, Jr., Nuovo Cimento 22, 643 
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A discussion of the various conserved spin operators in the Kemmer theory of spin-one particles is given. 
The algebraic properties and the interrelations of the various operators are also considered. The covariant 
forms of energy and spin projection operators are deduced and discussed. 
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operators are deduced from the Kemmer equation and 
the spin operators considered here. 

The classical equations of motion of the spin-one 
operator, in the four-vector and antisymmetric forms, 
are considered recently by Young and Bludman8 and 
Ford and Hirt.9 In this paper we have made no attempt 
to generalize the operators for external fields; nor are 
the operators used in any specific application. However, 
this problem will be considered separately in another 
publication. 

SPIN OPERATORS 

The Kemmer equation is given by10'11 

D3l,a#,+w> = 0, (1) 

where the 3^ obeys the Dufhn-Kemmer commutation 
rules 

P^P+M^=ft, V f AA,, (2) 

which characterize the equations as belonging to spin-1 
and spin-0 particles. The Hamiltonian form of Eq. (1) 
is given by 

la'p+^m2^=i(d^/dt)y (3) 
where 

cLi=i(P4pi-P$i) (4) 

and Eq. (3) is governed by the time-independent initial 
condition 

[#04-w>==O. (5) 

The Klein-Gordon equation can be derived from Eq. (1) 
and hence Eq. (1) has plane-wave solutions of the form 

\p=u exp (ippXp), (6) 

where u is a 10-component column matrix and p±=iE 
and %4=it. The /?M's are singular matrices with the 
eigenvalues + 1 (threefold), —1 (threefold), and 0 
(fourfold). Hence the number of linearly independent 
solutions are only six for given momentum p. Now we 
can write down the symmetrized energy-momentum 
tensor as 

r„,= -H^A+ft f t . )*- h&fr] • (7) 

Hence the energy density is given by 

r44=*#-ty (8) 

since $=i$+(2p£-1) and (2ft2-1)2= 1. Then it follows 
that the energy density is positive definite and so the 
energy is the same for all six states. However it changes 
the sign with respect to the charge. It is well known 

8 J. A. Young and S. A. Bludman, Phys. Rev. 131, 2326 (1963). 
9 G. W. Ford and C. W. Hirt (unpublished). 
10 N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939). 
11 See also P. Roman, Theory of Elementary Particles (North-

Holland Publishing Company, Amsterdam, 1961), p. 146. 

that the current-density four-vector is given by 

S^efM (9) 

and charge density is given by 

Si=ieif/+M, (10) 

with the eigenvalues zke. Thus the particle and anti-
particle correspond to the energy eigenvalues +E and 
—E. Then in the momentum representation we can 
write Eq. (1) as 

C ± ^ A + m ] £ / ± ( ^ ) = 0, (11) 

corresponding to the particle and antiparticle with the 
column vector U+(p) and U-(p), respectively. This 
equation is given here as it will be used later in the 
discussion of energy projection operators. 

A three-vector spin operator is required to12,13: 

(i) commute with the Hamiltonian and hence is 
defined separately on the energy manifolds, 

(ii) have the reflection properties of an angular-
momentum operator, 

(iii) be well defined in the rest system, and 
(iv) obey the usual angular-momentum commutation 

relations. 

For a free particle such an operator is found to be14,15 

m ((3xp) (s-p)p 
s = _ s + + m (12) 

E E E(E+m) 

This operator obeys the usual angular-momentum 
commutation relations for spin 1: 

[2 i ,2y] = i€iy*2* (13) 
and 

2;2/2&+2&2/2i=2t5/&+2fc8/*. (14) 

The square of the operator 2 is two times the unit 
matrix 

2 2 = 2 / . (15) 

Again it has the following property 

(£^) 3 =(S-*£) , (16) 

where H is any arbitrary unit vector. Hence 2 • it has the 
eigenvalues ± 1 and 0. From the above discussion it is 
obvious that one can obtain a complete set of eigen-
functions of H and 2-$ for a given momentum. A 
system in an eigenstate of 2-$ is said to be polarized 
in the H direction. In fact one can consider 2-$ as a 
generalized helicity operator. As we will show later, 
another interesting property of this operator for a 

12 M. E. Rose and R. H. Good, Jr., Nuovo Cimento 22, 565 
(1961). 

13 P. M. Mathews and A. Sankaranarayanan, Progr. Theoret. 
Phys. (Kyoto) 26, 499 (1961); 27, 1063 (1962). 

14 L. M. Garrido and P. Pascual, Nuovo Cimento 12,181 (1959). 
15 P. M. Mathews and A. Sankaranarayanan, Nuovo Cimento 

(to be published). 
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particular energy state is that the polarization thus 
defined is the same irrespective of the Lorentz frame 
from which the particle is looked at. 

It is well known that4-6-16 for a particle with momen
tum p and energy E one can define a four-vector r^ in 
the laboratory system as 

(^•P)P 
r=H+— r; (17) m(E-{-m) 

(18) 

which is the Lorentz transform of (rarest= (^,0) from 
the rest to the laboratory system. Similarly by Lorentz-
transforming an antisymmetric tensor 

(wM,)n»t= (eijk4kfi) (19) 

from the rest to the laboratory system one gets 

rE (^p)p 
w#=€tfjfe — n — 

Ltn m(E+m)Jk 

mu= {i/m)(fixy)i. 

(20) 

(21) 

Now we shall consider 2 as an instantaneous rest-
system operator for the Kemmer particle with the 
understanding that the rest frame of the particle means 
a coordinate system in which the particle is instant 
taneously at rest, which is obtained by a pure Lorentz 
transformation from a fixed laboratory system. Then, 
by making use of the Eqs. (17) to (21) we can easily 
write down the axial four-vector and antisymmetric 
tensor operators. They are given by 

and 

m (ffxp) (s-p)p 
T=—sH 1 , 

E E mE 

TA=(i/m)(s-v), 

(22) 

(23) 

Rij= eij£s+ (0 x p)/m2k, (24) 

Ru^ -i/E[($ x p)+ (1/m)(ff x p) x p] , . (25) 

These operators TM and R^ have the following interest
ing properties. The scalar product of TM with the 
momentum four-vector turns out to be 

TJ,= 0, (26) 

guaranteeing that during the motion T^ continues to 
have the same form in the rest system of the particle. 
Again the scalar product of JTM with itself is a multiple 
of a unit matrix 

T»T»=2, (27) 

guaranteeing that the magnitude of T^ is constant 
during the motion. As required earlier, the components 
of Tp commute with the Hamiltonian 

[7Vff] = 0. (28) 

The commutator among the components of T„ is given 
by 

[ r w r j = « ^ . (29) 

The last equation shows that the four-vector and anti
symmetric tensor operators are closely connected in a 
covariant way as we will again see later. The anti
symmetric tensor operator 2?M„ also satisfies the follow
ing relations: 

R.vp^O, (30) 

and 
£R,„B2=0. 

(31) 

(32) 

Again if we denote the space-space part of R^ by 0 
and the space-time part by Q, then they obey the 
following commutation relations: 

[Oifi^(E/m)ieijkTk (33) 
and 

LQi,Qj> - (i/™2hm(s.p)pk. (34) 

In between 0 and Q the following relations are obtained: 

[ o i , Q J = i / f » C T . p - r ^ i ] 

(i= 1, 2, 3 no summation over i), (35) 

[0 -Q-Q.O]=(2 /m)T .p , (36) 

10*0,1=-ptTj/m (i^j). (37) 
From the relations (29) to (37), it is clear that T^ and 
R^v are intimately connected and the connection is 
given by 

Tx=(i/2m)elivpxPPRllv. (38) 

The conserved covariant tensor has been derived by 
Mathews and the author17 by an entirely different 
procedure. It is also interesting to note the connection 
between the operators S, T, and 0 in the directions 
parallel and perpendicular to the momentum. Along 
the direction of momentum 

X ^ O ^ ( m / £ ) T ^ ( s - £ ) £ . (39) 

Perpendicular to the direction of momentum 

S,= T«=(w/£)0( . (40) 

Then, using the relations (39) and (40), we can write 

E \ E m 
Sj+-s , )=- -Td—T* 

m / m E 
and 

/ E \ E 
0 = ( 3 5 , 4 ~ S « ) = - 1 

\ m / m 

(E \ m E 
T = ( - 3 3 l + S # ) = - 0 « + - 0 

\m / E m 

(41) 

(42) 

^H. A. Tolhoek, Rev. Mod. Phys. 28, 277 (1956), Appendix. 

Now using the relations $ and rM, and H and m^ we get 

'___ H'H=Ttlrlx=RliymliV. (43) 
17 P. M. Mathews and A, Sankaranarayanan, NucL Phys. (to 

be published). 
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As we noted earlier these operators can be called 
generalized helicity operators. The covariant nature of 
this operator suggests that the polarization thus denned 
for a plane-wave state is the same irrespective of the 
Lorentz frame from which the particle is viewed. 
Equation (43) can be interpreted as follows: For a 
plane-wave state £ can be considered as the laboratory-
system spin operator corresponding to the direction of 
polarization it in the rest system of the particle and PM 

and PM„ are the laboratory-system operators corre
sponding to the four-vector rM and tensor mM„ which 
are the Lorentz transform of ($,0) and (e{jknkfi) from 
the rest system, respectively. 

PROJECTION OPERATORS 

For plane-wave solutions the state of a single Kemmer 
particle with given momentum is fully specified by the 
eigenvalues of two commuting operators, the Hamil-
tonian and the generalized helicity operator. By using 
Eqs. (1), (16), and (43) and the fact p^= —id^ we shall 
write the following equations. 

l-(i/m)3,p^^ (44) 
and 

Z > M * = * . (45) 

These equations are covariantly written and hence the 
covariantly defined energy and spin-projection oper
ators are easily written down. The energy projection 
operators are given by 

A + = ( - l/2m%(/3fip,y+iml3flp,'}, (46a) 

A_= ( - y2m*)l%p,p-imPtPd, (46b) 
and 

A0= ( 1 / W 2 ) [ G V M ) 2 + ™ 2 ] . (46c) 

Now using the property 

( - " f t M = ( - - W J , (47) 
\ m / \ m J 

it is easily seen that 

A + + A _ + A 0 - l (48) 
and 

AiA^StfA,-, (49) 
where i and j stand for + , —, and 0. Again for any 
solution \f/ they have the following properties: 

( - (f/w)/5M^)A+^=A+$, (50a) 

( - (i/m)^p,)A^^ - A_^, (50b) 
and 

(-(i/nOMjAtf^O. (50c) 

Now in terms of the projection operators, solutions 
U±(p) satisfying Eq. (11) can be written as 

U±(p)==iniA±x(±p), (51) 

where x?s are arbitrary 10-component column vectors 
in the momentum space. From the Eq. (50), it is obvious 
that the space defined by the column matrix \j/ splits 
into three subspaces and the particle and antiparticle 
solutions of the Kemmer equation correspond to A+ 

and A_, as is obvious from the Eq. (51). 
Now we turn to the consideration of spin-projection 

operators. As we noted earlier, T^r^ gives the co
variantly defined helicity operator. Then from the 
Eq. (45), one can write down the following operators: 

P+^hTfJTfo+ll, (52a) 

? . = i r / , C r / r i ] , (52b) 
and 

^ o = D - ( 7 > , ) 2 ] . (52c) 

That they represent the spin projection operators can 
easily be seen because of the following properties: 

P + + P _ + P o = l , (53) 

PiPj=bijPj ( f , i = + , - , 0 ) , (54) 

by using the property 

( J > , ) ^ ( P ^ ) . (55) 
Again 

P M r M P + =P + , (56a) 

7 > M P _ - - P _ , (56b) 

and 
7>yPo=0 . (56c) 

These equations again justify calling P + , P_, and P 0 

as spin projection operators in the sense that they 
select the spin eigenstates. P 0 corresponds to the longi
tudinal polarization with the eigenvalue 0 and P± 

correspond to the transverse polarizations, perpendic
ular to each other with the eigenvalues ± 1 . We can 
also define the spin projection operators as above just 
by replacing T^n either by R^m^ or by £ • $ . 
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